337
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective optimization of manufacturing cell design

Pages 4855-4875 | Received 01 Feb 2006, Published online: 22 Feb 2007
 

Abstract

Whereas the single-objective cell-formation problem has been studied extensively during the past decades, research on the multi-objective version of the problem has been relatively limited, despite the fact that it represents a more realistic modelling of the manufacturing environment. This article introduces multi-objective GP-SLCA, an evolutionary computation methodology for the solution of the multi-objective cell-formation problem. GP-SLCA is a hybrid algorithm, comprising of GP-SLCA, a genetic programming algorithm for the solution of single-objective cell-formation problems, and NSGA-II, a standard evolutionary multi-objective optimization technique. The proposed methodology is capable of providing the decision maker with a range of non-dominated solutions instead of a single compromise solution, which is usually produced as an outcome of alternative multi-objective optimization techniques. The application of multi-objective GP-SLCA is illustrated on a large-sized test problem taken from the literature.

Acknowledgements

The author would like to thank the reviewers for their constructive comments that helped to improve the quality of the initial manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.