119
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Balancing large-scale machining lines with multi-spindle heads using decomposition

, , , , &
Pages 4105-4120 | Published online: 06 Oct 2011
 

Abstract

The paper deals with optimal logical layout design for a type of machining lines. Such lines are made of many machine-tools (workstations) located in sequence. On each workstation there are several multi-spindle heads. A spindle head does not execute one operation but a block of machining operations simultaneously. The problem studied in this paper consists of finding the best partition of the set of all operations to be executed on the line into blocks and workstations. The objective is to minimize the number of blocks and workstations. An optimal decision must satisfy a desired productivity rate (cycle time) and precedence and compatibility constraints for machining operations. A heuristic approach based on decomposition of a Mixed Integer Programming (MIP) model is developed. Two ways of forming sub-problems are proposed. One treats the obtained subsets independently. The second aggregates the solution of the previous subproblems. Results of their computational evaluation are reported.

Acknowledgements

This work is partially supported by ISTC project B-986, INTAS project 03-51-5501 and European coordination action CODESNET.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.