73
Views
125
CrossRef citations to date
0
Altmetric
Original Articles

A structured approach to deadlock detection, avoidance and resolution in flexible manufacturing systems

, , &
Pages 2361-2379 | Published online: 07 May 2007
 

Abstract

Production scheduling models that determine part mix ratios and detailed schedules do not usually account for deadlocks that can be caused by part flow. Deadlocks must be prevented for operational control (especially in automated systems). The major thrust of this paper is in developing a structured model for deadlock detection, avoidance and resolution caused by part flow in manufacturing systems. A system status graph can be constructed for the parts currently in the system. Deadlock detection amounts to determining deadlocks in the system status graph. On the other hand, deadlock avoidance amounts to restricting parts movement so that deadlocks are completely avoided in the future. While deadlock detection is a one-step look ahead procedure, deadlock avoidance is a complete look ahead procedure. Deadlock resolution or recovery amounts to judiciously using a limited queue to recover from deadlocks. Deadlock detection and avoidance are absolutely crucial to uninterrupted operation of automated manufacturing systems. A model based in graph theory has been formulated to detect and avoid deadlocks in automated manufacturing systems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.