189
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

An iterative Kalman smoother/least-squares algorithm for the identification of delta-ARX models

, &
Pages 839-851 | Received 05 Feb 2008, Accepted 08 Oct 2009, Published online: 08 Jun 2010
 

Abstract

Additive measurement noise on the output signal is a significant problem in the δ-domain and disrupts parameter estimation of auto-regressive exogenous (ARX) models. This article deals with the identification of δ-domain linear time-invariant models of ARX structure (i.e. driven by known input signals and additive process noise) by using an iterative identification scheme, where the output is also corrupted by additive measurement noise. The identification proceeds by mapping the ARX model into a canonical state-space framework, where the states are the measurement noise-free values of the underlying variables. A consequence of this mapping is that the original parameter estimation task becomes one of both a state and parameter estimation problem. The algorithm steps between state estimation using a Kalman smoother and parameter estimation using least squares. This approach is advantageous as it avoids directly differencing the noise-corrupted ‘raw’ signals for use in the estimation phase and uses different techniques to the common parametric low-pass filters in the literature. Results of the algorithm applied to a simulation test problem as well as a real-world problem are given, and show that the algorithm converges quite rapidly and with accurate results.

Acknowledgements

The authors gratefully acknowledge the partial support of the EPSRC (UK) and TRW Conekt (UK).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.