195
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

On dynamical behaviour of two-dimensional biological reactors

, &
Pages 526-534 | Received 10 Aug 2009, Accepted 16 Jun 2010, Published online: 25 Nov 2010
 

Abstract

The dynamical behaviour for a generic two-dimensional model of a continuous bioreactor is studied in this article. The state variables for the bio-reacting system are restricted to concentrations of substrate and biomass, where the specific growth rate is a smooth function of the substrate concentration, which can be a kinetic function, monotone or non-monotone (as Monod, Haldane, Teissier, etc.). The effect of input (dilution rate) on multiplicity and bifurcation of equilibrium is shown in open-loop configuration. The absence of limit cycles on open-loop configuration and through state-feedback on the dilution rate are demonstrated. The aim of analysing oscillations under state feedback control is related to the possible improvement of reactor yields under this operation regime. An example for a cell-producing bioreactor illustrates the analytical results.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.