330
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Investigations on the dynamic coupling in AUV-manipulator system and the manipulator trajectory errors using bond graph method

, &
Pages 1104-1122 | Received 01 Mar 2010, Accepted 23 Sep 2010, Published online: 04 Jan 2011
 

Abstract

This article presents the modelling and simulation of the dynamic coupling in an autonomous underwater vehicle (AUV)-manipulator system, used for subsea intervention tasks. Bond graph, a powerful tool in multi-domain dynamic system modelling, is used for the first time to model the coupled dynamics of the AUV-manipulator system. This method enables the development of the system model in a modular form by creating sub-system models and connecting these models together at energy interactions ports, thus overcoming many of the computational difficulties encountered in conventional modelling methods. The effects of gravity, buoyancy, added mass and fluid drag on the dynamics of a 3 degrees of freedom (DoF) manipulator mounted on a 6 DoF AUV are analysed. The manipulator trajectory errors due to the interaction forces and moments between the vehicle and the manipulator have also been investigated and the results are presented. The dynamic model predicts the reaction forces on the vehicle under various operating conditions of the manipulator and their influence on the manipulator trajectory. The percentage errors of manipulator tip trajectory for different initial configurations and operating conditions are analysed. The estimation of resulting errors in the manipulator path due to dynamic coupling effect on the manipulator trajectory helps in the design of suitable trajectory controller for the system. Cartesian space transpose Jacobian controller for trajectory control of manipulator has been implemented and results are presented.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.