373
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Efficient prediction strategies for disturbance compensation in stochastic MPC

, &
Pages 1344-1353 | Received 30 Sep 2011, Accepted 26 Feb 2012, Published online: 25 Oct 2012
 

Abstract

The optimisation of predicted control policies in model predictive control (MPC) enables the use of information on uncertainty that, though not available at current time, will be so at a future point on the prediction horizon. Optimisation over feedback laws is however prohibitively computationally expensive. The so-called affine-in-the-disturbance strategies provide a compromise and this article considers the use of disturbance compensation in the context of stochastic MPC. Unlike the earlier approaches, compensation here is applied over the entire prediction horizon (extending to infinity) thereby leading to a significant constraint relaxation which makes more control authority available for the optimisation of performance. In addition, our compensation has a striped lower triangular dependence on the uncertainty on account of which the relevant gains can be obtained sequentially, thereby reducing computational complexity. Further reduction in computation is achieved by performing this computation offline. Simulation results show that this reduction can be gained at a negligible cost in terms of closed-loop performance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.