168
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Adaptive control of slider-crank mechanism motion: simulations and experiments

, &
Pages 1227-1238 | Received 20 Mar 1997, Accepted 02 Jun 1997, Published online: 06 Apr 2007
 

Abstract

The dynamic motion of an adaptive controlled slider-crank mechanism, which is driven by a permanent magnet ( PM) synchronous servo-motor, is studied. First, the mathematical model of the motor-mechanism coupling system is developed, where Hamilton's principle and the Lagrange multiplier method are applied to formulate the equation of motion. Then, by using the stability analysis with inertia-related Lyapunov function, an adaptive controller for the motor-mechanism coupling system is obtained. Simulation and experimental results show that the dynamic behaviours of the proposed controller-motor-mechanism system are robust with regard to parametric variations and external disturbances.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.