21
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

MUSCLE DEVELOPMENT IN AMPHIOXUS: MORPHOLOGY, BIOCHEMISTRY, AND MOLECULAR BIOLOGY

Pages S235-S246 | Published online: 30 Apr 2013
 

ABSTRACT

This review concerns the structure and biochemistry of muscle in amphioxus. Most work has focused on the segmented swimming (axial) muscles. These muscles derive from the medial wall of the somites, which arise as evaginations from the gut wall. The myotomal muscle cells of amphioxus, unlike those of vertebrates, never fuse, but remain mononucleate, contain only one myofibril, and span the entire length of the myotome. The muscle cells are very thin and lack a T-tubule system. There are two, maybe three, types of fibers. Innervation is via muscle tails, which contact the basal lamina of the nerve cord. The notochord is also composed of striated muscle cells, which similarly send muscle tails to the nerve cord. Less is known about the biochemistry of muscle. The notochord, like molluskan catch muscle, contains paramyosin. Among the muscle-specific proteins sequenced are alkali myosin light chain, troponin C and sarcoplasmic calcium-binding proteins, calcium-vector protein, and its target protein calcium vector-target protein. The only muscle regulatory factors identified are two MyoD proteins. Almost nothing is known about muscle enzymes in amphioxus.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.