345
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Surface effect in nanoscale adhesive contact

, , &
Pages 380-398 | Received 18 Jul 2019, Accepted 23 Aug 2019, Published online: 05 Sep 2019
 

ABSTRACT

Using the well-known Lennard–Jones potential and a recently proposed surface energy density-based elastic theory, we analyze the adhesive contact behavior between a rigid spherical nano-indenter and an elastic half-space in this paper. With the help of Newton’s method of iterations and arc-length continuation algorithm, both contact pressure and normal displacement at the indented surface are obtained numerically, based on which the load–approach curves are further achieved. It is found that the surface effect could be characterized by only one intrinsic length, i.e., the ratio of bulk surface energy density to shear modulus of the indented material. Comparison of the results with or without surface effect shows that the surface effect leads to a smaller pull-off force. Moreover, for the case of a zero-external loading, the corresponding approaches become smaller than the classical predictions, which qualitatively agree with the existing experimental findings. This indicates the elastic substrate becomes hardened due to the surface effect. All the study should have contributions to the deep understanding of surface effect on nanoscale adhesive contact behaviors.

Additional information

Funding

The work reported here is supported by NSFC through Grants (No. 11532013, No. 11872114, No. 11772333) and the Project of State Key Laboratory of Explosion Science and Technology (No. ZDKT17-02).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.