340
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Optimization of adhesive single-lap joints under bending moment

, & ORCID Icon
Pages 1687-1712 | Received 17 Mar 2021, Accepted 13 May 2021, Published online: 06 Jun 2021
 

ABSTRACT

This paper presents the optimization of stacking sequence of composite laminate adherends in an adhesive single lap joint under bending moment in order to minimize the amount of maximum peel and shear stress of the adhesive layer. The effects of different assumptions on the equations of the stress and their results are presented. The adhesive single lap joint is modelled as an adherend-adhesive sandwich panel. The finite element method is used to verify the analytical method and the structure is modelled by ANSYS software version 14. The results of the analytical method and the finite element method are compared, and there was a good agreement between two methods. For the optimization part, the single-objective and multi-objective bees algorithm are used to search for the best and worst stacking sequence with and without permutation. The results of the optimization indicate that the maximum shear and peel stress highly depend on the extensional, coupling and bending stiffness in a way that in the optimum model, adherends have high and almost equal stiffness. In the worst models, there is a huge difference in the stiffness of the adherends causing destructive high stress in the thinner adherend.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.