165
Views
3
CrossRef citations to date
0
Altmetric
Original Article

An experimental investigation of static and fatigue behavior of various adhesive single lap joints under bending loads subjected to hygrothermal and thermal conditions

, &
Pages 845-866 | Received 27 Apr 2023, Accepted 08 Aug 2023, Published online: 18 Oct 2023
 

ABSTRACT

The objective of this study is to investigate the impact of hygrothermal and thermal aging on adhesive bonding joints of similar and dissimilar specimens. The research focuses on the single lap joint (SLJ) configuration using Aluminum/Aluminum and CFRP/CFRP for similar bonding and Aluminum/CFRP for dissimilar bonding. Understanding the behavior of such joints over time and eventual failure can enhance their durability, reliability, and safety in structures. The study submerged SLJ specimens in tap water at a temperature of 53°C for 20 days to assess hygrothermal aging and kept another group of joints in an oven set at the same temperature for thermal aging. The research evaluated the strength of samples that underwent no aging, hygrothermal and thermal aging, tested through three-point bending tests. Various load levels were tested utilizing a recently designed fixture, including 70%, 60%, and 50% of the static load level. Results showed the highest joint strength in Aluminum/Aluminum SLJs and reduced strength following thermal and hygrothermal aging. The failure patterns and number of cycles leading to failure also varied with load percent and aging. Ultimately, the study aimed to evaluate and contrast the strength of samples that underwent different aging processes.

Acknowledgement

This research has been jointly supported by The China's Liaoning Province 'Xing Liao Talents Plan' Youth Top-notch Talent Funding Project under Grant No.XLYC2007146 and Science and Technology Research Plan of China Railway 19th Bureau Co.,Ltd under Grant No.2021-B03.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

China’s Liaoning Province “Xing Liao Talents Plan” Youth Top-notch Talent Funding Project (No.XLYC2007146).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.