30
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Infrared Spectroscopy of Interphases Between Model Rubber Compounds and Plasma Polymerized Acetylene Films

, &
Pages 151-163 | Received 31 Mar 1995, Accepted 24 Jul 1995, Published online: 26 Dec 2007
 

Abstract

Thin (∼ 750 Å) plasma polymerized films of acetylene deposited onto polished steel substrates are promising primers for rubber-to-metal bonding. The as-deposited films contained mono- and di-substituted acetylene groups, aromatic groups, and groups such as carbonyl which apparently resulted from reaction of residual free radicals with oxygen when the films were exposed to the atmosphere. There was some evidence for formation of acetylides in the interphase between the films and the substrates. Reactions occurring in the interphase between the plasma polymerized films and natural rubber were simulated using a model “rubber” consisting of a mixture of squalene, zinc oxide, carbon black, sulfur, stearic acid, diaryl-p-diphenyleneamine, and N, N-dicyclohexyl-benzothiazole sulfenamide (DCBS). It was found that zinc oxide reacted with stearic acid to form zinc stearate in the interphase between squalene and the plasma polymerized acetylene primer. Zinc stearate reacted with DCBS and sulfur to form an accelerator complex and zinc perthiomercaptides. The perthiomercaptides reacted with squalene and the plasma polymer to form pendant groups which eventually reacted to form crosslinks between squalene and the primer. In the absence of cobalt naphthenate, the formation of pendant groups and eventually crosslinks was relatively slow and the length of the sulfur chains in the crosslinks and the pendant groups was relatively long. When cobalt naphthenate was added to the model “rubber,” the reactions in the interphase between squalene and the plasma polymerized film occurred much faster and the length of the crosslinks and the pendant groups was much shorter.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.