137
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Contact Angle Hysteresis: The Need for New Theoretical and Experimental Models

&
Pages 159-185 | Received 28 Jun 1996, Accepted 30 Sep 1996, Published online: 24 Sep 2006
 

Abstract

Wetting on ambient, heterogeneous surfaces is characterized by contact angle hysteresis. Quantitative models of contact angle hysteresis are essential in order to design surfaces with specific wetting behavior or to interpret experiments seeking to characterize a surface through its wetting properties. We focus on the successes and failures of theoretical models as well as experiments on model surfaces in describing contact angle hysteresis on ambient surfaces. We describe experimental observations of contact line structure and dynamics as well as contact angle hysteresis on laboratory surfaces. We discuss three general classes of models treating one-dimensional periodic heterogeneity, two-dimensional periodic heterogeneity, and random heterogeneity. We show where these models succeed and where they fail to agree quantitatively and qualitatively with experimental observations. New models treating strong, dense heterogeneity as well as temporal relaxation of contact angles in experimental environments need to be developed to provide quantitative descriptions of contact angle hysteresis on ambient surfaces.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.