37
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Laser-Enhanced Gas Phase Surface Modifications of Teflon AF1600 for Increased Copper Adhesion

, &
Pages 155-165 | Received 17 Dec 1998, Published online: 23 Sep 2006
 

Abstract

Multilevel interconnect devices, made of alternating layers of a low permittivity polymer (e.g., Teflon AF1600TM) and a low resistivity metal (e.g., copper), are increasingly being used in microelectronics in order to decrease the RC signal transmission time delay. The mechanical stability of the multilevel interconnects is related to the adhesion developed at the metal-dielectric interface. Since Cu/Teflon AF1600 adhesion is moderate and may not satisfy the requirements of the microelectronics industry, new treatments of the fluoropolymer surface are needed to improve it. In this note, we present several surface modifications, such as the formation of reactive sites during intense X-ray exposure, and S- or N-grafting, activated by UV radiation in the presence of H2S and NH3; copper is well known to react with both thiols (R—SH) and amines (R—NH2) to form strong bonds. Both X-ray exposure and N-grafting lead to enhanced adhesion.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.