271
Views
68
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams

, &
Pages 357-375 | Received 26 Feb 2004, Published online: 03 Dec 2010
 

Abstract

A new one-dimensional (1-D) numerical model for calculating flow and sediment transport in steep mountain streams is developed. 3ST1D, which stands for Steep Stream Sediment Transport 1-D model, is applicable to unsteady flowconditions that occur over transcritical flowstream reaches such as flows over step-pool sequences. 3ST1D consists of two coupled components, the hydrodynamic and the sediment transport. The flow component is addressed here by solving the unsteady form of the Saint-Venant equations. The TotalVariation Diminishing Dissipation (TVD)-MacCormack scheme, which is a shock-capturing scheme capable of rendering the solution oscillation free, is employed here to approximate the hydrodynamic solution over transcritical flow stream reaches. The sediment component of the model accounts for multifractional sediment transport and incorporates a series of various incipient motion criteria and frictional formulas applicable to mountain streams. In addition, sediment entrainability is estimated based on a state-of-the art formula that accounts for the bed porosity, turbulent bursting frequency, probability of occurrence of strong episodic turbulent events, and sediment availability in the unit bed area. The model at the end of each time step predicts the flowdepth, velocity and shear stress distribution within a cell and calculates changes in bed evolution and grain size distribution. The overall performance of the model is evaluated by comparing its predictions with observations from two flume studies, two field investigations and against the predictions of the quasi-steady model of Lopez and Falcon developed for mountain streams. A sensitivity analysis is performed to assess the effects of cell size and Manning's roughness coefficient in the predictive ability of the model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.