171
Views
10
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

The front condition for intrusive gravity currents

, , , &
Pages 788-801 | Received 06 Aug 2007, Published online: 26 Apr 2010
 

Abstract

A mathematical model is developed for a high Reynolds number, quasi-steady, intrusive gravity current propagating into a two-layer ambient fluid. The model is based on inviscid, irrotational flow theory, and is used to predict the rate of advance of the current front as a function of its head height. The key underlying assumptions of the model are that the local conditions at the head determine its speed of propagation, and that the upstream portion of the head is well approximated by an inviscid, irrotational flow. In order to provide a complete set of boundary conditions it is assumed that the ambient flow over the top of the head is horizontal, but not uniform. An upper bound solution is derived and is compared with a full solution generated with an optimisation based Boundary Element Method technique. The upper bound solution is shown to be entirely adequate for relative current heights greater than 0.3. The results from two experimental programmes provide support for the model predictions, and particle tracking velocimetry measurements indicate that the assumption of horizontal flow over the head is reasonable.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.