119
Views
9
CrossRef citations to date
0
Altmetric
RESEARCH PAPER

Flow induced by a turbulent jet under random waves

&
Pages 820-829 | Received 28 May 2008, Published online: 26 Apr 2010
 

Abstract

The flow characteristics of a vertical turbulent jet discharged in random-waves environment have been investigated experimentally to assess the dilution of wastewater discharge in coastal areas. The results show that additional wave induced mixing is significant, which is reflected from the substantial increase in jet width and turbulence, as well as the rapid decrease in centerline velocity and shortening of jet potential core. The jet–wave interaction generates two flow regimes; jet-momentum dominated near field (JDNF) and wave-momentum dominated far field (WDFF). Comparing to those of jet flow in regular waves, the transition point between the two regimes is closer to the jet outlet and the velocity decay in WDFF is milder. A Lagrangian integral model has been developed to predict the characteristics of jet in random waves. Using the commonly adopted values of the radial and forced entrainment coefficients, the computed results match the experimental data closely for cases of small to medium waves (usig/W0 < 0.05, usig = mid-depth maximum orbital velocity, WW0 = jet outlet velocity), while for large waves the jet width is underpredicted, showing that the entrainment coefficients are wave dependent.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.