580
Views
20
CrossRef citations to date
0
Altmetric
Research papers

Three-dimensional modelling of flow in sharp open-channel bends with vanes

, &
Pages 64-72 | Received 20 Oct 2010, Accepted 31 Aug 2011, Published online: 10 Feb 2011
 

Abstract

Flow around a sharp open-channel bend is highly three-dimensional (3D) due to the combined effects of secondary flow, a large free surface variation and flow separation along the inner wall. Continuous vanes often used in closed curved conduits to generate a more uniform downstream flow were tested in the open channel using a 3D finite-volume model with a Reynolds stress turbulence model and the volume of fluid method for free surface prediction. The velocity field, turbulent kinetic energy and the extent of the flow separation zone were successfully validated against laboratory measurements for the no-vane case. The 3D simulations for one-vane and three-vane configurations reveal that vertical vanes are effective to reduce the secondary flow intensity and flow separation along the inner wall. The energy loss for bends with vanes is further slightly reduced compared to the no-vane case. The three-vane configuration is particularly efficient at creating uniform downstream flow.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.