689
Views
9
CrossRef citations to date
0
Altmetric
Research papers

Turbulent velocity distribution with dip phenomenon in conic open channels

, , &
Pages 73-82 | Received 10 Mar 2014, Accepted 21 May 2014, Published online: 17 Oct 2014
 

ABSTRACT

Conic open-channel flow as occurs in sub-drains, sewers, and culverts is computed by Manning's or Darcy's resistance equations for the cross-sectional average velocity only. Yet, fish passage culvert design requires the cross-sectional velocity distribution, which is proposed in this paper based on two hypotheses: (i) centreline velocity distribution follows the conventional log-law with a cubic deduction near the water surface; (ii) cross-sectional velocity distribution is described by Guo and Julien's modified log-wake-law but neglecting the squared sine function. These hypotheses result in a novel and simple velocity distribution model without any fitting parameter. Its graphical interpretation for the elliptic, parabolic, and hyperbolic channels indicates reasonable velocity contours with dip phenomenon. Further, it agrees well with circular pipe data related to the average shear velocity, velocity-dip position, centreline and cross-sectional velocity distributions. A potential application includes fish passage culvert design by specifying a low velocity zone near the wall.

Funding

This research was supported by the US FHWA Hydraulics R&D Program [Contract No. DTFH61-11-D-00010] through the Genex System to the University of Nebraska-Lincoln.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.