202
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Discharge prediction in straight compound channels using the mixing length concept

&
Pages 381-394 | Received 18 Mar 1996, Published online: 15 Jun 2010
 

Abstract

A method for predicting the depth-discharge relationship in a compound channel is developed and applied to two different sets of experimental results. The method uses a mixing length formulation to account for the turbulent interaction between the main channel and the floodplain and the resulting momentum exchange. This momentum transfer tends to reduce the discharge in the main channel and increase the discharge on the floodplain. The net effect is a reduction in the overall discharge capacity of the compound channel. As a result, practical methods which can allow for the interaction effect are needed. In this formulation a variation of Prandtl's mixing length hypothesis is applied to calculate the apparent shear stresses, indicative of the turbulent interaction, on the sides of small vertical elements which comprise the compound channel cross-section. The approach suggested is to use the mixing length approximation to calculate the correction for the momentum interaction effects that are neglected when the traditional divided channel approach is used. The traditional divided channel approach referred to herein typically divides the compound channel into three large sub-areas: main channel, left floodplain and right floodplain using a vertical division at the edges of the main channel.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.