143
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Thermal and Thermo-Oxidative Degradation of Biodegradable Poly(Ester Urethane) Containing Poly(L-Lactic Acid) and Poly(Butylene Succinate) Blocks

, , , &
Pages 635-649 | Received 12 Aug 2008, Accepted 20 Sep 2008, Published online: 08 May 2009
 

Abstract

A novel biodegradable poly(ester urethane; PEU) was synthesized by chain extension reaction of dihydroxylated poly(L-lactic acid; PLLA) and poly(butylene succinate; PBS) using diisocyanate as a chain extender. The kinetics of thermal and thermo-oxidative degradation of PEU containing PLLA and PBS blocks were studied by thermogravimetric analysis (TGA). TGA results indicated that PEU was more stable in air than in nitrogen and went through a two-stage degradation process irrespective of the experimental atmosphere. Activation energy of each stage was calculated by means of Kissinger, Kim-Park, Friedman, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose methods. For the first stage, the activation energy value obtained in air was slightly higher than the corresponding value obtained in nitrogen; and for the second stage, the activation energy showed a much higher value in air than in nitrogen. The Coats-Redfern method was employed to study the degradation mechanism of each stage. The results indicated that the degradation of the first stage follows the P3/4 mechanism irrespective of the experimental atmosphere; the degradation of the second stage of PEU obeys the P1 mechanism in nitrogen while P3/2 in air.

Acknowledgment

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 50525309).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.