233
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Polymerization-induced Phase Separation: Phase Behavior Developments and Hydrodynamic Interaction

, &
Pages 998-1008 | Received 24 Jun 2012, Accepted 03 Nov 2012, Published online: 04 Apr 2013
 

Abstract

The process of polymer synthesis based on polymerization-induced phase separation (PIPS) is revisited from the theoretical point of view. Cahn–Hilliard–Cook theories for spinodal decomposition are adapted to describe the kinetics of phase separation and deduce the time-resolved scattering function, while the double reaction model is used to describe the kinetics of polymerization. Coupling of these two kinetics is provided by the Carother's equation relating the fraction of reacted monomers to the degree of polymerization at time t, denoted N(t). It is argued that the approach to criticality is governed by a critical parameter, χc, that is different from the usual parameter for spinodal decomposition, χs, deduced from the second derivative of the free energy. While the latter parameter depends on the reciprocal degree of polymerization N−1(t), the former one depends on its time integral. This leads to significant consequences on the phase behavior developments during the PIPS process. Hydrodynamic interactions are found to speed up the emergence of instability modes. Although the qualitative trends remain similar to those of the Rouse dynamics, important quantitative changes are found due to the long-range viscous flow effects.

Acknowledgments

We are grateful to P. H. Geil for the numerous corrections and suggestions he made to improve the manuscript. This research was supported by the Ministry of Higher Education and Scientific Research of Algeria.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.