222
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Computational-Based Approach for Predicting Porosity of Electrospun Nanofiber Mats Using Response Surface Methodology and Artificial Neural Network Methods

, , &
Pages 1404-1425 | Accepted 29 Jul 2015, Published online: 09 Oct 2015
 

Abstract

Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of errors. The mean relative error for the RSM and ANN models were 1.97% and 2.62% and the root mean square errors (RMSE) were 1.50 and 1.95, respectively. The superiority of the RSM-based approach is due to its high prediction accuracy and the ability to compute the combined effects of the electrospinning factors on the porosity of the nanofiber mats.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.