75
Views
4
CrossRef citations to date
0
Altmetric
Articles

Preparation and Thermal Characterization of Three Different Series of Novel Polyhedral Oligomeric Silsesquioxanes/Polystyrene Nanocomposites

, &
Pages 1111-1123 | Received 07 Apr 2016, Accepted 11 Sep 2016, Published online: 28 Sep 2016
 

ABSTRACT

The resistance to the thermal degradation of some polystyrene (PS)-based nanocomposites, loaded with 5% w/w of one of nine novel polyhedral oligomeric silsesquioxanes (POSSs) of general formula R7R’(SiO1.5)8, where R = isobutyl, cyclopentyl, or phenyl and R’ = -(CH2)5-CH3, -(CH2)7-CH3, or -(CH2)9-CH3, was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres. Nanocomposites were prepared by in situ polymerization of styrene in the presence of the appropriate POSS and were characterized by differential scanning calorimetry, to determine the glass transition temperature (Tg), and by nuclear magnetic resonance spectroscopy, to determine the actual filler content which, in all cases, was slightly higher than in the starting mixtures. Nanocomposites were degraded in a thermobalance, in both selected atmospheres, in the 25–700°C temperature range with the formation of small quantities of solid residue at 700°C. The temperatures of 5% mass loss (T5%) were determined to evaluate the resistance to the thermal degradation; the results were higher than for PS. The data obtained were then compared with each other in order to verify if and how much the nature of R and R’ can influence the thermal stability of the corresponding nanocomposites.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.