606
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and Properties of Polyurethane Hydrogels Based on Hexamethylene Diisocyanate/Polycaprolactone-Polyethylene Glycol

, , &
Pages 187-195 | Received 31 Oct 2016, Accepted 03 Feb 2018, Published online: 06 Mar 2018
 

ABSTRACT

Hydrogels are considered an optimum material for controlled release drug systems and tissue engineering scaffolds since they are tri-dimensional networks. In this work hexamethylene diisocyanate (HMDI), polycaprolactone (PCL) and polyethylene glycol (PEG) were used to prepare polyurethane prepolymers using diethylene glycol (DEG) as a chain-extender. Then the prepolymer was used to fabricate the HMDI/PCL-PEG/DEG polyurethane hydrogels by free radical polymerization using benzoyl peroxide (BPO) as a cross-linking agent. The influences of the ratio of polyol on the contact angle, swelling ratio, morphology and cytotoxicity in-vitro of the HMDI/PCL-PEG/DEG polyurethane hydrogel were investigated. The biological behavior of the polyurethane hydrogels was analyzed by studying the cell behavior using the standard biological MTT (3–4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) test. The Fourier transform infrared (FTIR) spectra results showed that the polyurethane hydrogels were successfully synthesized. The change of the molar the ratio of the polyhydric alcohols (PEG and PCL) played important roles in the swelling degree, the contact angle and the pore size. The HMDI/PCL-PEG/DEG polyurethane hydrogel (PCL/PEG = 1:3) was hydrophilic with many more large pores while the polyurethane hydrogel with PCL/PEG = 3:1 had a dense structure. The fibroblastic cell proliferation improved with decreasing relative PEG content; however, there were insignificant differences (P > 0.05) on all days of observation of the samples with various PEG contents compared with the negative control group. The MTT assays revealed that the cells were able to grow and proliferate quite quickly in the extracts of the HMDI/PCL-PEG/DEG polyurethane hydrogels as well as the extract of the negative control.

Acknowledgments

This work was financially supported by the National Natural Science Fund of China (No. 31360161) and Hunan Provincial Natural Science Fund of China (No. 12JJ6009 and No. 13JJ2030).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.