125
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical, Biodegradation and Morphological Properties of Sisal Fiber Reinforced Poly(Lactic Acid) Biocomposites

, , , , &
Pages 275-289 | Received 17 Jan 2017, Accepted 27 Jan 2019, Published online: 04 Mar 2019
 

Abstract

Sisal fiber-reinforced poly(lactic acid) (SF/PLA) biocomposites were prepared by melt mixing and subsequent compression molding. The effect of fiber content and sodium hydroxide (NaOH) concentration, used for the fiber mercerization, on the properties of the biocomposites was investigated. It was found that the SFs had a large potential for improving the mechanical properties of the biocomposites. The tensile strength and impact strength increased linearly up to a fiber content of 20%, and then decreased due to the fiber agglomeration. The water absorption was enhanced with increasing the SF content owing to the SFs containing an abundance of hydroxyl groups. The biodegradability of the SF/PLA biocomposites increased similarly. Furthermore, the mercerization led to an increase of the mechanical properties of the biocomposites, which normally depended on the fiber-matrix adhesion. The mercerization had competing effects on the water absorption and biodegradability, including not only the positive function of the improved hydrophilicity of the mercerized-SF but also the negative role of the increase of fiber-matrix interfacial adhesion. Overall, the optimum SF load for mechanical properties was 20 wt% due to a good balance between the reinforcement and distribution of the SFs, whereas the 6% NaOH concentration was optimal owing to the resulting fibers yielding the highest mechanical properties and acceptable water resistance and biodegradability.

Additional information

Funding

This work was financially supported by the National Nature Science Fund of China (51303139, 51403160) and the Scientific Research Foundation of Hubei Provincial Education Department (Q20121710).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.