226
Views
6
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic Activities of Boron Doped Titanium Dioxide Nanoparticles and its Composite with Polyaniline

&
Pages 182-195 | Received 24 Aug 2019, Accepted 29 Nov 2019, Published online: 12 Dec 2019
 

Abstract

Titanium dioxide (TiO2) was doped with a nonmetalic element, boron (B), and the boron doped TiO2 (B-TiO2) was combined with polyaniline (Pani) through an in-situ polymerization technique. The photocatalytic activity of the prepared samples was monitored by the degradation of methylene blue under UV light irradiation. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to reveal the effect of boron doping on the crystalline and chemical structure of the photocatalyst, respectively. The morphological and elemental compositional characteristics of the samples were evaluated using field emission scaning electron microscopy (FE-SEM) and energy dispersive x-ray analysis. The optical band gap energy of the prepared samples was obtained by UV-Visible (UV-Vis) spectroscopy. B-TiO2 exhibited enhanced photocatalytic performance compared to the undoped photocatalyst. Furthermore, compared with TiO2 and B-TiO2, Pani/B-TiO2 displayed superior photocatalytic activity. The composite achieved almost 26% methylene blue degradation within 150 minutes. Although the boron doping enhanced the crystallinity of TiO2 slightly, it did not affect the morphology. FTIR confirmed the presence of tri-coordinated interstitial boron in the Ti–O–B bonds. The UV-Vis spectra displayed a red shift with the incorporation of the boron atoms. The incorporation of the boron atoms in the TiO2 crystal structure are suggested to promote the separation of the photoinduced electron-hole pairs, a possible reason for the enhanced photocatalytic activity. B-TiO2 and its composite with polyaniline could be considered as a promising photocatalyst to remove organic dyes from the wastewater.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.