191
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Variations in Linear and Nonlinear Postural Measurements under Achilles Tendon Vibration and Unstable Support-Surface Conditions

&
Pages 61-69 | Received 19 Mar 2009, Accepted 30 Sep 2009, Published online: 08 Jul 2010
 

ABSTRACT

Reduced support-surface stability has been shown to attenuate the effect of Achilles tendon vibration on backward body displacement. In the present study, 20 participants performed a quiet, upright standing task on a stable and sway-referenced support, with and without vibration. The authors calculated equilibrium scores (ES), approximate entropy (ApEn), and mean and peak power spectral density frequencies of center-of-pressure variations. It was found that ES values decreased with the addition of vibration and in the sway-referenced support condition. ApEn values decreased with the addition of vibration but only with a stable support. Conversely, mean and peak frequencies increased with the addition of vibration, independent of support stability. These results suggest that the role of ankle proprioceptive input changes depending on support-surface characteristics and demonstrate the value of using both linear and nonlinear measures of postural sway.

ACKNOWLEDGMENTS

The authors wish to thank Sheryl Bishop for her statistical support in this project and Amir Pourmoghaddam for his development of customized Matlab scripts.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.