816
Views
5
CrossRef citations to date
0
Altmetric
Techincal Material

Critical heat flux of oxidized zircaloy surface in saturated water pool boiling

, &
Pages 596-606 | Received 03 Jun 2014, Accepted 18 Aug 2014, Published online: 08 Sep 2014
 

Abstract

In the present experimental study, the critical heat flux (CHF) of an oxidized zircaloy surface and its enhancement were investigated during saturated water pool boiling at atmospheric pressure. Three kinds of zircaloy specimens, oxidized at three different temperature conditions (i.e., 300, 450, and 600 °C), were prepared with a non-treated (i.e., fresh) zircaloy surface. The surfaces of the test specimens were characterized by an energy dispersive spectroscopy analysis, scanning electron microscopy image, and water contact angle measurement. The oxidized surface (OS) specimens increased the CHF, which could be because the oxidized surface improves the surface wettability (i.e., decreases the water contact angle). The OS specimens showed the similar water contact angles, and their CHF values became almost the same. In the present experimental conditions, the water contact angle could be considered as a reasonable parameter to explain the CHF data of test specimens. The CHF enhancement of the OS specimens was about 40%, as compared with the non-treated specimen, and interestingly, it was a comparable value to that of the specially treated zircaloy surfaces of the previous report, for a similar water contact angle condition. This implies that the oxidation process used in this work can be a simple, convenient, and cost-effective way to improve the CHF of the zircaloy surface. Using the present experimental data, the previous CHF correlations were assessed and discussed. Among the correlations tested, Kandlikar model best fitted the present CHF measurement data and enhancement factors.

Additional information

Funding

This work was supported by the National Research Foundation (NRF) funded by the Korean government (MSIP) [grant number NRF-2012M2A8A5025824].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.