186
Views
0
CrossRef citations to date
0
Altmetric
Article

Halogenation of used aluminum matrix test reactor fuel – a bench-scale demonstration with surrogate materials

, , , &
Pages 395-406 | Received 28 Feb 2021, Accepted 25 Aug 2021, Published online: 13 Oct 2021
 

ABSTRACT

Experiments with surrogate materials were performed at bench scale to demonstrate a halogenation technique applicable to treatment of used aluminum matrix test reactor fuel. The technique involves dissolution and separation of aluminum from used aluminum matrix test reactor fuel in molten-halide salt systems prior to treatment and disposition of the fuel’s uranium and fission products. Demonstration of the halogenation technique was performed with neodymium metal as a non-radiological surrogate for uranium metal. Experiments involved blending forms of aluminum and neodymium metal with ammonium and lithium chloride or ammonium and lithium bromide, which upon heating decomposed into ammonia gas and the respective hydrogen chloride or bromide gas. The latter reacted with the metals to form the respective aluminum and neodymium halides. At elevated temperatures, aluminum halides gasified away from the respective neodymium halides, which fused with their respective lithium halides. Samples of fused and distillate salts were collected and analyzed, yielding extents of aluminum removal that ranged from 94.5–98.2% for chlorination runs and 91.4–97.8% for bromination runs. No neodymium was detected in the distillate fractions. Some experiments were repeated with excess reactants, and a portion of aluminum chloride distillate was processed into a consolidated waste form.

Acknowledgments

This work was supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.