1
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The Role of Photon Noise in GranularityFootnote

Pages 96-111 | Received 16 Jan 1976, Published online: 22 Jul 2016
 

Abstract

The granularity of the silver deposit which results from a light exposure of a photographic emulsion layer, when considered in terms of the number of incident quanta, is very high in comparison with the cases of X-ray exposures and I-quantum systems generally. It has been suggested that the high granularity can be attributed to an amplification of the incoming photon noise by the photographic layer and that the response of the layer as far as contrast and granularity are concerned is equivalent to that of an ideal recorder at a much lower exposure. This suggestion is open to the criticism that for light exposures granularity appears to be independent of the exposure required to obtain it and is an intrinsic property of the silver deposit. It is argued that if the processes of exposure and development are to reduce grains to silver at random, which were already arrayed at random in the emulsion layer, then the mechanics of the selection processes cannot contribute to the granularity.

Detailed analyses of both chequer-board and more realistic models of the photographic layer for exposures in which the granularity sample patches each receive the same number of photons indicate that granularity involves the noise of “partitioning” the incident photons amongst the grains in each sample patch. In abandoning the assumptions of randomness of deployment and selection of grains on exposure, it is convenient to introduce two “noise reduction” principles which govern the way in which grain crowding and photon noise are associated. The use of these principles leads to the relation:

G2 = P2 + QG2,

in which G is the Selwyn granularity, P is the analogous quantity for a fixed number of photons incident on each sample patch and Q is the detective quantum efficiency. This equation expresses the physical indistinguishability of low-frequency photon noise and large-area signals—the difference is merely one of labelling. Furthermore, it can be deduced that since Q is small in practice for light exposures, the degree of non-randomness associated with grain crowding is almost negligible. In the absence of light scatter in the layer, the partition noise arises partly from incoming high-frequency photon noise; the granularity may therefore be deemed to originate in part in photon noise and to be an amplified form of its low-frequency components. A new definition of Q is suggested which leads to a simple interpretation of a frequency-dependent efficiency.

Resume

A nombre de quantums incidents ègal, la granularitè du dèpot argentique rèsultant d’une exposition y la lumière, est beaucoup plus èlèvee que celle obtenue lors d’une exposition aux rayons X et en gènèral dans tous les systèmes monoquantiques.

II a ètè suggèrè que la granularitè èlevèe peut etre due a une amplification du bruit de photons incidents par la couche photographique ct que la rèponse de la couche en ce qui concerne le contraste et la granularitè est èquivalente a celle d’un rècepteur idèal pour une exposition beaucoup plus faible.

On peut objecter a cette hypothfése que la granularitè rèsultant d’une exposition a la lumiére s’avére etre indèpendante de l’exposition nècessaire pour I’obtenir et qu’elle est une propriètè intrinseque du dèpôt d’argent.

En fait, si I’exposition et le dèveloppemcnt entrainent une rèduction au hasard des grains en argent (grains qui sont dèjd distribuès au hasard dans la couche d’emulsion), le mècanisme des processus de sèlection ne peut pas agir sur la granularitè.

L’analyse dètaillèe de modéles à damiers de couches photographiqucs et de modèles plus prochcs de la rèalitè avec des expositions pour lesquelles chaque case recoil le menie nombre de photons indique que la granularity dèepend du bruit de rèepartition des photons incidents dans chaquc case. En abandonnant I’hypothèsc de la rèpartition au hasard et de la sèlection au hasard des grains lors de l’exposition, on est amenèà introduire deux principcs de “rèduction de bruit” qui gouvcrnent la manière selon laquelle le rassemblcmcnt des grains et le bruit de photon sont associès. L’utilisation de ces principes conduit à la relation

G2 = P2 + QG2,

dans laquelle G est la granularitè Selwyn, P est la quantitè analogue pour un nombre de photons incidents de chaque case et Q est l’efficacitè quantique de détection. Cette èquation exprime I’impossibilitè physique de distingucr le bruit de photons de basse frèquence des signaux de grande dimension. La diffèrence est simplcment une question de dèsignation. En outre, il peut etre dèduit que, puisque en pratique Q est petit pour des expositions à la lumièrc, lc bruit de la rèpartition non-alèatoire dcs grains est presque nègligeablc. En absence de diffusion de la lumiere, le bruit de rèpartition provient cn partic de la composante haute frèquence du bruit des photons incidents; la granularity peut toutefois etre considèrèe comme provenant en partie du bruit photonique ct commc ctant une forme amplifièe des composantes de basse Wquence. Une nouvelle dyfinition de Q est suggèrèe, qui conduit à une simple interprètation de 1’èfficacitè dèpendant de la frèquence.

Zusammenfassung

Es wurde vorgeschlagen, die rclativ hohe Körnigkeit einer photographischen Schicht als Verstärkung des Rauschesn dcs einfallcndcn Photoncnstromes anzusehen. Die Schicht ware dann hinsichtlich Kontrast und Körnigkeit cincm idealen Empfänger mit entsprechend niedriger Belichtung aquivalent. Andererscits Uäißt sich argumentieren, daß dcr Prozeß der Belichtung und Entwicklung zu einer statistischen Auswahl von cnlwickelten Körnernaus einer statistisch verteilten Gesamtheit von Körnern führt. In diesem Falle kann der Auswahlmechanismus nicht zur Körnigkeit beitragen. Detaillierte Untersuchungen verschiedener Modelle photographischcr Schichtcn zeigen, daß fiir Belichtungen bci denen pro Meßfläche jeweils die gleiche Anzahl von Photoncn auftrelfen, das Koernigkeitsrauschen einen Anteil enthiilt, der der Verteilung der Photonen auf die Körner in der Meßfläche entspricht (partition noise). Unter Vcrwendung zweier “noise reduction principles” läßt sich die Beziehung

G2 = P2 + QG2

herlciten, wobei G die Selwyn Körnigkeit, P die analog definierte Größe für cine gegebene Anzahl von Photoncn pro Meßfläche und Q die DQE (detective quantum efficiency) bedeutet. Ohnc Lichtstreuung in dcr Schicht ist das “partition noise” zum Teil auf das einfallende hoch-frequente Photoncnrauschcn zurückzufiihren. Die Kornigkeit kann daher zum Teil als durch das Photonenrauschen verursacht angeschen werden. Eine neue Definition dcr DQE wird vorgeschlagen die zu einer einfachcn Interpretation der frequenzabhängigen Efficiency führt.

Riassunto

La granularity del deposito di argento di uno strato di cmulsionc fotografico esposto alia luce, quando venga considcrata in termini del numero di quanti incidenti, e molto elevata in confronto con quanto accade per esposizioni a raggi X o in genere con sistemi a 1 quanto.

E’stato suggerito chc I’elevata granularity sia da attribuire a un’amplificazione del rumorc di fotoni incidenti da parte dello strato fotografico e chc il responso dello strato, per quanto riguarda contrasto e granularity, sia equivalcntc a qucllo di un registratore idcalc per esposizioni di intensity molto bassa.

Questa idea è aperta alia critica chc per esposizioni a luce la granularity risulta essere indipendentedall’esposizione richiesta per ottencrla, cd e una propriety intrinscca del cieposito di argento. Se ne deduce che se i process! di esposizione e sviluppo riduccssero ad argento casualmente i granuli, che sono giy disposti a caso ncllo strato di emulsione, allora la mcccanica dci processi di sclezione non potrebbe contribuirc alia granularity.

Analisi particolareggiatc sia del modello a scacchiera che di modelli piu rcalistici dello strato fotografico, per esposizioni nellc quali le zone campione di granularity ricevono ognuna lo stesso numero di fotoni, indicano chc la granularity coinvolge il rumorc di “ripartizione” dei fotoni incidenti fra i granuli di ciascuna zona campione.

Abbandonando i criteri di casualita nella suddivisione e selczione dei granuli nel corso dell’esposizione, e convenicnte introdurre due principi di “riduzione di rumore” che governano il modo in cui l’ammassamento dei granuli e il rurnore fotonico sono associati. L’uso di questi principi porta alia relazione:

G2 = P2 + QG2

ove G è la granularity secondo Selwyn, P è l’analoga quantitä per un numero fissato di fotoni incidenti su ciascuna zona campione e Q è 1’efficienza quantica del rivelatore.

Questa equazione esprime l’indistinguibility fisica fra rumore fotonico di bassa frequenza e segnali di grande area—la dilfercnza essendo puramente nominale. Inoltre, poichè Q per esposizioni luminose è in pralica piccolo, se ne deduce che il grado di non-casualita associate con l’ammassamento dei granuli risulta praticamente trascurabile.

In assenza di diffusione luminosa nello strata, il rumore di ripartizione proviene parzialmente dal rumore dei fotoni incidenti ad alta energia; di conseguenza la granularity pub cssere vista come originata parzialmente dal rumore fotonico cd essere una forma amplificata delle sue component a bassa frequenza.

Si suggerisce una nuova definizione di Q che permetta una semplice interpretazione di una efficienza dipendente dalla frequenza

Notes

Paper presented at a Symposium on “Fundamental Problems in Photographic Science” organized by the Science Committee of The Royal Photographic Society on 7–10 September 1975 in Oxford. MS received 16 January 1976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.