Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 100, 2002 - Issue 2
56
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

The temperature dependence of the hydroxyl deuterium quadrupole coupling parameter and the rotational correlation time of the OD internuclear vector in neat ethanol-d1

&
Pages 303-309 | Received 19 Feb 2001, Accepted 15 Jun 2001, Published online: 23 Nov 2009
 

Abstract

The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190–350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol-d1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation (R2 = 0.99) between XD, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: XD(kHz) = 297.60 − 15.28δH. The temperature dependence of XD ranges from 199.5kHz at 190K to 221.4 kHz at 350 K. Using the values for XD and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 Å3, the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.