Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 99, 2001 - Issue 20
84
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Effect of short- and long-range forces on the properties of fluids. III. Dipolar and quadrupolar fluids

, &
Pages 1751-1764 | Received 17 Jan 2001, Accepted 11 Jun 2001, Published online: 16 Nov 2009
 

Abstract

Using realistic pair potential models for acetone and carbon dioxide, both the spatial and orientational structure of these two typical multipolar (i.e. dipolar and quadrupolar, respectively) fluids is investigated in detail by computing the complete set of the site-site correlation functions, multipole-multipole correlation functions, and selected 2D correlation functions. The effect of the range of interactions on both the structural and thermodynamic properties of these fluids is studied by decomposing the potential into short- and long-range parts in the same manner as for water [Kolafa, J. and Nezbeda, I., 2000, Molec. Phys., 98, 1505; Nezbeda, I. and Lísal, M., 2001, Molec. Phys., 99, 291]. It is found that the spatial arrangement of the molecules is only marginally affected by the long-range forces. The effect of the electrostatic interactions is significant at short separations and cannot be neglected but nevertheless the overall structure of the short-range and full systems is similar as well as their dielectric constants. These findings are also reflected in the dependence of the thermodynamic properties on the potential range with the short-range models providing a very good approximation to those of the full system.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.