Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 100, 2002 - Issue 18
39
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The reduction of hydrogen in the presence of bisulphate on platinum(111) electrodes

&
Pages 2911-2920 | Received 03 Jul 2001, Accepted 17 Jul 2001, Published online: 16 Nov 2009
 

Abstract

A new model for the electroreduction of hydrogen in acidic media is proposed. One of the still open problems is the structure of the intermediate compound of the hydrogen evolution reaction (HER) or alternatively the UPD hydrogen. We propose here a new form of this compound, namely (H5O2 +)3, a honeycomb, hydrogen-bonded lattice which is formed through a first-order phase transition by water and the hydronium H3O+ ion under favourable conditions. The essential point of our theory is the use of a correct water model, which has to be tetrahedral and flexible. Then, as the polarity of the electrode is changed: (1) for positive electrodes the dipole of the water points down, a zig-zag chain of hydrogen-bonded water, is formed which is responsible for the 3½ x 7½ structure of the sulphate observed by STM. (2) For negative polarization the water dipole points up. The (bi)sulphate and the water form a periodic structure by incorporating 1/3 of hydronium, which then is adsorbed with a hydrogen down in the hollow sites of the Pt(111) electrode. This compound is neutral and forms a two-dimensional honeycomb arrangement of water with (or without) bisulphate ions. The model is consistent with all known experiments: it reproduces well the experimental voltammogram and the recent radiotracer measurements of bisulphate adsorption. Furthermore it gives a robust explanation of the 2/3 hydrogen yield for this surface.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.