Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 100, 2002 - Issue 18
181
Views
94
CrossRef citations to date
0
Altmetric
Original Articles

Thermodynamic and transport properties of simple fluids using lattice sums: bulk phases and liquid-vapour interface

&
Pages 2983-2992 | Received 08 Aug 2001, Accepted 19 Dec 2001, Published online: 16 Nov 2009
 

Abstract

Molecular dynamics simulations in the canonical ensemble have been performed to obtain the thermodynamic and transport properties of the Lennard-Jones fluid. The dispersion interactions were calculated using lattice sums. This method makes it possible to simulate the full potential avoiding the inclusion of the long range corrections (LRC) during or at the end of simulations. In the calculation of dynamic properties in bulk phases and thermodynamic quantities of inhomogeneous systems where the interface is physically present, in general the LRC cannot easily be included. By using the lattice sums method, the results are independent of the truncation of the potential. In the liquid-vapour interface simulations it is not necessary to make any pre-judgments about the form of the LRC formula to calculate coexisting properties such as the surface tension. The lattice sums method has been applied to evaluate how well the full interaction can be calculated in the liquid phase and in the liquid-vapour interface. In the liquid phase the pressure, configurational energy, diffusion coefficient and shear viscosity were obtained. The results of the thermodynamic properties are compared with those obtained using the spherically truncated and shifted (STS) potential with the LRC added at the end of simulations, and excellent agreement is found. The transport properties are calculated on different system sizes for a state near the triple point. The diffusion coefficient using the lattice sums method increases with the number of molecules, and the results are higher than those of the STS model truncated at 2.5σ (STS2.5). The shear viscosity does not show any system size dependence for systems with more than 256 molecules, and the lattice sums results are essentially the same as those for the STS2.5. In the liquid-vapour equilibria the coexisting densities and vapour pressures for the full potential agree well with those obtained using the Gibbs ensemble and the NPT + test particle methods. The surface tension using lattice sums and truncation of forces at 2.5σ agrees well with STS results using large system sizes and cutoff distances.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.