Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 100, 2002 - Issue 21
313
Views
119
CrossRef citations to date
0
Altmetric
Original Articles

Grand Equilibrium: vapour-liquid equilibria by a new molecular simulation method

&
Pages 3375-3383 | Received 05 Mar 2002, Accepted 08 May 2002, Published online: 16 Nov 2009
 

Abstract

A new molecular simulation method for the calculation of vapour-liquid equilibria of mixtures is presented. In this method, the independent thermodynamic variables are temperature and liquid composition. In the first step, one isobaric isothermal simulation for the liquid phase is performed, in which the chemical potentials of all components and their derivatives with respect to the pressure, i.e. the partial molar volumes, are calculated. From these results, first-order Taylor series expansions for the chemical potentials as functions of the pressure μ i (p) at constant liquid composition are determined. This information is needed, as the specified pressure in the liquid will generally not be equal to the equilibrium pressure, which has to be found in the course of a vapour simulation. In the second step, one pseudo grand canonical simulation for the vapour phase is performed, where the chemical potentials are set according to the instantaneous pressure p v using the previously determined function μ i (p v). In this way, results for the vapour pressure and vapour composition are achieved which are consistent for the given temperature and liquid composition. The new method is applied to the pure Lennard-Jones fluid, a binary and a ternary mixture of Lennard-Jones spheres, and shows very good agreement with corresponding data from the literature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.