Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 101, 2003 - Issue 8
41
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics study of electron gas models for liquid water

&
Pages 1183-1198 | Received 11 Nov 2002, Accepted 09 Dec 2002, Published online: 23 Nov 2009
 

Abstract

The frozen density electron gas model proposed by Gordon and Kim for rare gas systems has been implemented in a molecular dynamics code. This code has been applied to investigate various options for extending this scheme to inter-molecular interactions in liquid water. We have compared a number of gradient corrections to the Thomas-Fermi kinetic energy. We also explored a more empirical approach based on adaptation of the frozen molecular electron density to the condensed phase environment. Consistent with experience from force field methods, enhancement of the molecular dipole moment proved to be necessary to reproduce the properties of the liquid. The best models we investigated are a gradient corrected expansion of the simple local density Hamiltonian applied in the original Gordon and Kim model. In addition, these models observed a modified molecular electron density carrying the same dipole moment of 2.95 D as has been observed by recent ab initio molecular dynamics studies based on fully self-consistent Kohn-Sham methods. Possible implications of this finding for force field models are discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.