Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 101, 2003 - Issue 18
32
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

The ν6, ν8412 infrared system of Si2H6 under high resolution: rotational and torsional analysis

, &
Pages 2895-2906 | Received 22 Apr 2003, Accepted 16 May 2003, Published online: 23 Nov 2009
 

Abstract

A Fourier transform infrared spectrum of disilane has been measured at a Doppler limited resolution, and analysed in the region of the ν6 and ν8 fundamentals, from about 800 to 1020cm−1. The torsional splittings are not resolved in the ν6 band, showing that the splittings in the ν6 = 1 state and in the ground state are almost identical. The torsional splittings in the reasonably unperturbed regions of the ν8 fundamental are about 0.0146cm−1, and a detailed rotation-torsion analysis shows that the intrinsic splittings in the ν8 = 1 state are smaller than in the ground state by this amount. An intrinsic torsional splitting about 0.0150 cm−1 is estimated in the vibrational ground state and in the ν6 = 1 state, and almost vanishing in the ν8 = 1 state (about 0.0004cm−1), with a barrier height around 407cm−1. This is in agreement with the expectation from theory. The ν8 band, beyond a moderate x, y-Coriolis coupling with ν6, is affected by several perturbations, also selective in the torsional components. The 3ν4 + v12 combination, with three quanta of the torsional mode excited and large torsional splittings, is the main perturber, causing both Fermi and Coriolis resonances in several regions of the spectrum. The vibrational origins of all four torsional components of 3ν4 + v12 were determined. Other perturbative effects are attributed to the systems 2ν3 + ν4, and ν4 + 249(E + A). The spectrum was numerically analysed, and the relevant vibration-rotation-torsion parameters were determined.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.