154
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical calculation of absorption intensities of C2H and C2D

&
Pages 2167-2179 | Received 07 Apr 2004, Accepted 21 Apr 2004, Published online: 05 Aug 2006
 

Abstract

The theory of dipole-allowed absorption intensities in triatomic molecules is presented for systems with three close-lying electronic states of doublet multiplicity. Its derivation is within the framework of a recently developed variational method [CARTER, S., HANDY, N. C., PUZZARINI, C., TARRONI, R., and PALMIERI, P., 2000, Molec. Phys., 98, 1967]. The method has been applied to the calculation of the infrared absorption spectrum of the C2H radical and its deuterated isotopomer for energies up to 10 000 cm−1 above the ground state, using highly accurate ab initio diabatic potential energy and dipole moment surfaces. The calculated spectra agree very well with those recorded experimentally in a neon matrix [FORNEY, D., JACOX, M. E., and THOMPSON, W. E., 1995, J. molec. Spectrosc., 170, 178] and assignments in the high energy region of the IR spectra are proposed for the first time.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.