Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 102, 2004 - Issue 9-10: Special Issue: In Honour of Ruth Lynden-Bell
613
Views
65
CrossRef citations to date
0
Altmetric
Original Articles

Field-evaporation from first-principles

, &
Pages 1045-1055 | Received 15 Jan 2004, Accepted 24 May 2004, Published online: 20 Feb 2007
 

Abstract

Under the application of a strong electric field, atoms from a metal surface can rupture their bonds and escape, leading to ‘field-evaporation’. We present a first-principles description of this phenomenon, taking as an example the evaporation of Al adatoms from an Al(111) surface. The ‘charged-plane’ method [Lozovoi, A. Y., and Alavi, A., 2003, Phys. Rev. B, 68, 246416.] has been implemented in the context of a localized-basis code (SIESTA). This enables appreciable fields to be stably and efficiently applied to surfaces, represented using slab geometries. We quantify details of the evaporation process as a function of the applied field strength. The field at which the zero-temperature barrier disappears (evaporation field) is predicted and possible scenarios of the evaporation of surface atoms are discussed. Results are compared to the ‘image-hump’ model for this process. The field dependence of the barrier is described by this model surprisingly well, despite the potential energy surface not being satisfactorily reproduced.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.