Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 105, 2007 - Issue 2-3: Foundations of Molecular Modeling and Simulation FOMMS 2006
418
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

APT a next generation QM-based reactive force field model

, , , , , & show all
Pages 301-324 | Received 15 Jun 2006, Accepted 12 Dec 2006, Published online: 04 Dec 2010
 

Abstract

Modelling reactivity at the nanoscale is a major computational challenge. Both reactive force field and combined QM–MM methodologies have been and are being developed to study reactivity at this boundary between molecules and the solid state. There have been more than 1500 publications since the mid-1990s, on combined QM–MM methodologies. Limitations in current models include the distortional characteristics of force field potential terms, the smooth transit from one potential surface to another, rather than surface hopping, and the blending of electrostatics between QM and MM portions of a QM–MM model. Functional forms, potential surface coupling terms, and parameterization strategies for the Approximate Pair Theory (APT), a next generation reactive force field model, are described. The APT model has been developed to correct a number of limitations in current reactive force field models as well as providing a foundation for a next generation QM–MM model. Chemical bonding concepts are used to develop fully dissociative bond stretch, bend, torsion, and inversion valence terms. Quantum mechanics also provides functional forms for potential surface coupling terms that permit a general description of reactivity from hydrogen bonding, through non-classical carbocations and cracking, to olefin polymerization, oxidation, and metathesis. Van der Waals, electrostatic, and metallic bonding models also derive from quantum mechanical resonance. Finally, Pauli Principle-based orthogonality provides a way to electrostatically couple the QM and MM portions of a QM–MM model that will support arbitrarily large basis sets.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.