Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 107, 2009 - Issue 8-12: A Special Issue in Honour of Professor Henry F. Schaefer
451
Views
74
CrossRef citations to date
0
Altmetric
Invited Articles

Assessment of basis sets for F12 explicitly-correlated molecular electronic-structure methods

, , &
Pages 963-975 | Received 07 Nov 2008, Accepted 19 Dec 2008, Published online: 07 Oct 2010
 

Abstract

One-electron basis sets for F12 explicitly-correlated molecular electronic-structure methods are assessed by analysing the accuracy of Hartree–Fock energies and valence-only second-order correlation energies of a test set of 106 small molecules containing the atoms H, C, N, O and F. For these molecules, near Hartree–Fock-limit energies and benchmark second-order correlation energies (accurate to within 99.95% of the basis-set limit) are provided. Absolute energies are analysed as well as the Hartree–Fock and second-order correlation contributions to the atomisation energies of the molecules. Standard basis sets such as the Karlsruhe def2-TZVPP and def2-QZVPP sets and the augmented correlation-consistent polarised valence X-tuple zeta (aug-cc-p VXZ, X = D, T, Q, 5) sets are compared with the specialised cc-pVXZ-F12 (X = D, T, Q) sets that were recently optimised by Peterson and co-workers [J. Chem. Phys. 128, 084102 (2008)] for use in F12 theory. The results obtained from F12 explicitly-correlated molecular electronic-structure calculations are compared with those that are obtained by standard electronic-structure calculations followed by basis-set extrapolation based on the X −3 convergence behaviour of the aug-cc-pVXZ basis sets. The most important conclusions are that the cc-pVXZ-F12 sets are the preferred basis sets for F12 theory and that the X −3 extrapolation from the aug-cc-pVQZ and aug-cc-pV5Z is slightly more accurate than F12 theory in the cc-pVTZ-F12 basis but less accurate than F12 theory in the cc-pVQZ-F12 basis.

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the Schwerpunktprogramm ‘First Principles Methods’ (SPP 1145, grant No. KL 721/2-3). F.A.B. gratefully acknowledges support by the Fonds der Chemischen Industrie through a Chemiefonds stipend. D.P.T. gratefully acknowledges support by the DFG through grant No. TE 644/1-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.