Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 108, 2010 - Issue 12
154
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Diffusion of gases across lipid membranes with OmpA channel: a molecular dynamics study

, &
Pages 1569-1581 | Received 09 Feb 2010, Accepted 30 Mar 2010, Published online: 07 Jul 2010
 

Abstract

Molecular transport across biological membranes occurs in a range of important chemical and biological processes. The biological membrane can usually be modelled as a phospholipid bilayer, but to correctly represent biological transport, the embedded transmembrane proteins must also be included. In previous molecular simulation studies on transport of small gas molecules in dipalmitoylphosphatidylcholine (DPPC) bilayer membrane, a coarse-grained model was used to provide direct insight into collective phenomena in biological membranes. Coarse graining allowed investigation of longer time and length scales by reducing the degrees of freedom and employing suitable potentials. In this work, membranes that include transmembrane proteins are modelled. This allows one to compare the molecular transport across a lipid membrane with and without the assistance of transmembrane channels. Outer membrane protein A (OmpA) – a porin from Escherichia coli with a small pore size – was chosen in this study because its detailed structure is known, it has high stability and is known to form a nonspecific diffusion channel that permits the penetration of various solutes. In this work the pore characteristics and interaction between lipid and protein were investigated and transport of water and other small gas molecules within the channel were studied. The MD simulation results obtained are compared with previous simulation results and available experimental data. The results obtained from this study will lead to better understanding of protein functionality and advance the development of biochips and drug delivery systems.

Acknowledgements

We thank the reviewer for many helpful and substantial comments and suggestions. This research has been funded by a grant from the Office of Basic Energy Science, Department of Energy [Grant No. DE-FG02-08ER46538].

Notes

All figures can be viewed in colour online.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.