Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 109, 2011 - Issue 5
177
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Effect of ionic size on the structure of spherical double layers: a Monte Carlo simulation and density functional theory study

, , &
Pages 639-644 | Received 28 Oct 2010, Accepted 23 Nov 2010, Published online: 03 Mar 2011
 

Abstract

The effect of ionic size on the diffuse layer characteristics of a spherical double layer is studied using Monte Carlo simulation and density functional theory within the restricted primitive model. The macroion is modelled as an impenetrable charged hard sphere carrying a uniform surface charge density, surrounded by the small ions represented as charged hard spheres and the solvent is taken as a dielectric continuum. The density functional theory uses a partially perturbative scheme, where the hard sphere contribution to the one particle correlation function is evaluated using weighted density approximation and the ionic interactions are calculated using a second-order functional Taylor expansion with respect to a bulk electrolyte. The Monte Carlo simulations have been performed in the canonical ensemble. The detailed comparison is made in terms of zeta potentials for a wide range of physical conditions including different ionic diameters. The zeta potentials show a maximum or a minimum with respect to the polyion surface charge density for a divalent counterion. The ionic distribution profiles show considerable variations with the concentration of the electrolyte, the valency of the ions constituting the electrolyte, and the ionic size. This model study shows clear manipulations of ionic size and charge correlations in dictating the overall structure of the diffuse layer.

Acknowledgements

The authors thank T. Mukherjee for his interest and encouragement. The authors gratefully acknowledge support from the INDO-EU project MONAMI on Computational Materials Science.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.