Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 109, 2011 - Issue 21
1,280
Views
146
CrossRef citations to date
0
Altmetric
Topical Reviews

Random-phase approximation correlation methods for molecules and solids

&
Pages 2473-2500 | Received 25 May 2011, Accepted 08 Aug 2011, Published online: 12 Oct 2011
 

Abstract

Random-phase approximation (RPA) correlation methods based on Kohn–Sham density-functional theory and Hartree–Fock are derived using the adiabatic-connection fluctuation dissipation theorem. It is shown that the correlation energy within the adiabatic-connection fluctuation-dissipation theorem is exact in a Kohn–Sham framework while for Hartree–Fock reference states this is not the case. This shows that Kohn–Sham reference states are probably better suited to describe electron correlation for use in RPA methods than Hartree–Fock reference states. Both, Kohn–Sham and Hartree–Fock RPA methods are related to each other both by comparing the underlying correlation functionals and numerically through the comparison of total energies and reaction energies for a set of small organic molecules.

Acknowledgements

We gratefully acknowledge the funding of the German Research Council (DFG), which, within the framework of its ‘Excellence Initiative’, supports the Cluster of Excellence ‘Engineering of Advanced Materials’ (www.eam.uni-erlangen.de) at the University of Erlangen-Nuremberg. We are grateful to Wim Klopper for providing us with Citation31 prior to its publication.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.