Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 110, 2012 - Issue 18
147
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

On the orientational characteristics and transport coefficients of an oblate spheroidal hematite particle in a simple shear flow

Pages 2137-2149 | Received 21 Dec 2011, Accepted 03 Feb 2012, Published online: 15 Mar 2012
 

Abstract

We have developed the basic equation of the orientational distribution function of oblate spheroidal hematite particles with rotational Brownian motion in a simple shear flow under an applied magnetic field. An oblate spheroidal hematite particle has an important characteristic in that it is magnetized in a direction normal to the particle axis. Since a dilute dispersion is addressed in the present study, we have taken into account only the friction force (torque) whilst neglecting the hydrodynamic interactions among the particles. This basic equation has been solved numerically in order that we may investigate the dependence of the orientational distribution on the magnetic field strength, shear rate and rotational Brownian motion and the relationship between the orientational distribution and the transport coefficients such as viscosity and diffusion coefficient. We found that if the effect of the magnetic field is more dominant, the particle inclines in such a way that the oblate surface aligns in the magnetic field direction. If the Peclet number increases and the effect of the shear flow becomes more dominant, the particle inclines such that the oblate surface tilts in the shear flow direction. The viscosity due to the magnetic torque is shown to increase as the magnetic field increases, since the magnetic torque due to the applied magnetic field becomes the more dominant effect. Moreover, the viscosity increase is shown to be more significant for a larger aspect ratio or for a more oblate hematite particle. We have applied the analysis to the problem of particle sedimentation under gravity in the presence of a magnetic field applied in the sedimentation direction. The particles are found to sediment with the oblate surface aligning more significantly in the sedimentation direction as the applied magnetic field strength increases.

Acknowledgement

The present study was partially supported by a Grant-in-Aid for Scientific Research of The Ministry of Education, Culture, Sports, Science and Technology of Japan (B20360048).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.