Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 112, 2014 - Issue 2
69
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The production of prop-2-ynylideneamine by thermolysis of N-chloropropargylamine, N-fluoropropargylamine and N-hydroxypropargylamine: a computational study

Pages 304-315 | Received 17 Apr 2013, Accepted 27 May 2013, Published online: 26 Jun 2013
 

Abstract

Ab initio molecular orbital calculations using MP2 and DFT/B3LYP methods at the 6-311++G(d,p) and aug-cc-pvdz basis sets were applied to characterise the kinetics of the thermal dissociation of HC≡CCH2NHX [where X = OH(I), F(II) and Cl(III)] to produce Z- and E-prop-2-ynylideneamines (HC≡CCH=NH) (IV and V, respectively), which tautomerise to vinyl cyanide (CH2=CHC≡N) (VI). The optimised geometries and electronic energies of reactants, transition states and products were estimated and discussed. A concerted proton migration and HX abstraction mechanism was proposed for the imine formation. The reliance of these properties on the elected levels of theory was discussed. The activation energies and barrier heights for the Z- and E-forms and their vinyl cyanide tautomers were estimated and analysed. The Z-form was computed to be more stable than the E-form. Using natural bond orbital calculations, the origin of the preference of the Z-form was attributed mainly to the N lone pair delocalisations. Vinyl cyanide was located to have a lower energy (33–35 kcal/mol) than prop-2-ynylideneamine. The provenance of the preference of the former and its tautomerisation mechanism will be addressed in a separate publication.

Acknowledgements

The author wishes to acknowledge King Abdulaziz University for providing the Gaussian program version 09 together with the ChemCraft suite and the computer capabilities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.