Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 112, 2014 - Issue 24
181
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Solid–liquid equilibria of crystalline and semi-crystalline monodisperse polymers, taking into account the molecular architecture by application of the lattice cluster theory

&
Pages 3109-3119 | Received 13 Apr 2014, Accepted 01 Jun 2014, Published online: 23 Jun 2014
 

Abstract

In this work, an old theory for the melting of linear, semi-crystalline polymers, developed by Flory in 1949, is rediscovered and extended to branched polymers. The extension is realised by the incorporation of the lattice cluster theory, which is able to model polymers with an arbitrary architecture. The final working equation describing the melting of a branched semi-crystalline polymer can be solved for the melting temperature analytically. This new equation permits the theoretical investigation of different impact factors on the melting temperature in the case of branched semi-crystalline polymer, for instance the influence of molecular weight on the structural variables that describe the crystalline state. It could be shown that the extension leads to a better description of experimental data for the melting of high-density polyethylene taken from the literature than the original equation of linear semi-crystalline polymers. However, the comparison with experimental data makes it clear that the incorporation of polydispersity in the theoretical framework is needed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.