Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 113, 2015 - Issue 8
289
Views
4
CrossRef citations to date
0
Altmetric
Research Article

DFT studies on the interaction of PtxRuyMz (M = Fe, Ni, Cu, Mo, Sn, x + y + z = 4, x ≥ 1, y ≥ 1) alloy clusters with O2

, , , , , & show all
Pages 854-865 | Received 12 Sep 2014, Accepted 29 Oct 2014, Published online: 25 Nov 2014
 

Abstract

The reaction mechanism of O2 dissociation on PtxRuyMz (M = Fe, Ni, Cu, Mo, Sn, x + y + z = 4, x ≥ 1, y ≥ 1) alloy catalysts have been investigated with density functional theory calculations in this work. For bare alloy clusters, bimetallic clusters are more stable than the ternary alloy clusters. The geometries of the PtxRuyMz–O2 system, O–O bond stretching frequency and electronic-structure details have been investigated. The energies of O2 adsorption on PtRu clusters are slightly higher than those on PtxRuyMz clusters, and the more charge transfer to O2 from the metal cluster, the higher O2 the adsorption energy obtains. The reaction barriers show that the catalytic performance of trimetallic clusters are better than those of bimetallic clusters, and Pt2RuM clusters exhibit superior catalytic activity for O2 dissociation. The different performance of these alloy clusters for O2 dissociation is scrutinised with aid of molecular orbital and natural bond orbital population analysis.

Additional information

Funding

This research was financially supported by National Natural Science Foundation of China [grant number 51277188] and the sharing of Chongqing University's large-scale equipment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.